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Scaling of random spreading in small world networks
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In this study we have carried out computer simulations of random walks on Watts-Strogatz-type small world
networks and measured the mean number of visited sites and the return probabilities. These quantities were
found to obey scaling behavior with intuitively reasoned exponents as long as the probabilityp of having a
long range bond was sufficiently low.
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Recent interest in some disordered graphs was stimul
by a series of discoveries related to the so called small w
properties of certain networks including social nets@1#,
document retrieval in the World Wide Web@2#, the Internet
@3#, scientific cooperation relations,@4# etc. ~for reviews see
Ref. @5#!. Here ‘‘small world’’ is used in the sense, tha
arbitrarily selected pairs of nodes can be reached from e
other within few steps on the average, in spite of the re
tively low number of links present in the system.

Many of the earlier network studies have dealt with t
Watts-Strogatz small world network~WSSWN! model,
which we will also study. We define it as a one-dimensio
ring consisting ofN nodes withk-neighbor interaction where
in addition,Np new links are introduced between arbitrari
chosen, not yet connected nodes. Though the small w
property is closely related to the dynamic process of inf
mation spreading in the network, relatively few papers ha
been devoted to this aspect@6–9,11#.

In a recent paper Jasch and Blumen@9# studied the targe
problem on a WSSWN model, i.e., the decay of the num
of randomly distributed target sites on the graph where

FIG. 1. Raw data for the average number of distinct sites vis
Sas a function of time stepsn and the probabilityp51024, 1023.5,
1023, and 1022.5 increasing from bottom to top. For largep the
saturation due to the finite sizeN5105 of the systems is visible.
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nihilating random walkers move around. There it turned o
that this decay process is closely related to the mean num
of distinct visited sitesS(n), wheren is the number of steps
done by the walkers. In addition they observed the expec
crossover inS(n) from theAn behavior that is characteristi
for the one-dimensional case toS(n)}n describing the high-
dimensional or random graph situation.S(n) as a function of
p andn has a scaling form

S~n!5n1/2f ~npa!, ~1!

where f is a universal scaling function with the followin
properties:

f ~x!}H const x!1,

Ax x@1.
~2!

Intuitively it is expected thata52 since in the system ther
exists a basic length scalej}1/p, characteristic of the aver
age distance between nodes having long range links@7# for
which the walker needsnj}j2 steps to sweep through. Thu
the argument of the scaling functionf in Eq. ~1! should be
n/nj . In spite of this strong argument Jasch and Blumen@9#

d

FIG. 2. Scaling plot of the data of Fig. 1 witha52. The inset
shows the scaling plot with the exponent of Ref.@9#.
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found in their numerical simulations of WSSWN’s a valu
a51.85. In the simulations they had chosenN550 000 by
taking an average over 500 random walkers for each of
100 WSSWN and they variedp in the interval 0.01<p
<0.1. The main aim of the present paper is to resolve
discrepancy in the value ofa.

It is first noted that Eq.~1!, as is usual in scaling theory, i
valid only asymptotically and in this case the scaling limit
N→`, n→`, and p→0. The scaling regime can be es
mated from the variation of the mean vertex distancel as a
function of p @7#: It turns out thatlk/N is a scaling function
with the argumentx5pkN and of sigmoidal shape. Thi
curve suggests that one cannot expect good scaling for
above mentioned crossover, ifpkN@100. Therefore, it
seems likely that in Ref.@9# the investigated values ofp were
not small enough to assure the proper scaling beha
(pminkN51000 in Ref.@9#!.

For this reason we have carried out our simulations w
considerably smaller values ofp. In order to do so, we had to
increase the system size as well. Hence we have stu
WSSWN’s with k52, N5105 and for each value ofp
51024, 1023.5, 1023, and 1022.5 we did 100 realizations
and had 100 random walkers per realization (pminkN520).
In these simulations we measured the average numbe
distinct visited sitesS(n) as functions ofn andp, as depicted
in Fig. 1. In this plot it is seen that for the two largest valu
of p saturation ofS(n) has set in.

Figure 2 shows a scaling plot of the results onS(n) where
S(n)/An is plotted vsnpa. The scaling was found to b
optimal with the choice ofa52. For comparison, we hav
also shown the same plot witha51.85, the value found in
Ref. @9#. Our results clearly support the simple scaling p
ture discussed above.

We have also checked the scaling behavior for ano
quantity, namely the return probabilityP00(n). This is

FIG. 3. Raw data for the return probabilityP00. The p values
are the same as for Fig. 1, now increasing from top to bottom.
whole time interval was binned by 100 bins of equal sizes on
logarithmic scale.
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known to decay as 1/An for the p50 case while an expo
nential decay is expected for largep. A scaling form similar
to Eq. ~1! should be valid forP00, which Scalaet al. have
shown@10#,

P005n21/2w~x!, ~3!

wherew(x) is a rapidly decaying scaling function with th
limit w5const forx!1. However, the argument ofw should
be the same as in Eqs.~1! and ~2!, namely,x5pan. Also
Jespersenet al. give a similar form for the scaling of the
return probabilityP00 and report that sometimes the trans
tion occurs earlier thann;p22 @12#.

Here in the interest of even higher accuracy, we have u
ten times more runs for the averages. In order to minim
the effect due to the finite size of the samples, we ha
subtracted 1/N, i.e., then→` limit, from the measured val-
ues. Figure 3 shows the data for the return probabilityP00
and Fig. 4, shows the scaling plots. Again, we see that
scaling with the intuitively expecteda52 is superior to the
one obtained by the value of Ref.@9#.

In conclusion we have shown that for sufficiently sm
probabilities of long range links, the proper scaling variab
for the average number of distinct sites visited and also
the return probability isnp2, i.e., the natural exponenta
52 holds for the Watts-Strogatz small world network.
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FIG. 4. Scaling plot of the data of Fig. 3 usinga52. For mini-
mizing the finite size effects the asymptotic value 1/N51025 was
subtracted fromP00. For comparison, the inset shows the scali
plot with thea of Ref. @9#.
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